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Temperature scaling in a dense vibrofluidized granular material
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The leading order “temperature” of a dense two-dimensional granular material fluidized by external vibra-
tions is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of
restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared
to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be
elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the
leading approximation. The density profile is determined by solving the momentum balance equation in the
vertical direction, where the relation between the pressure and density is provided by the virial equation of
state. The temperature is determined by relating the source of energy due to the vibrating surface and the
energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with
simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-
density relation provided by the ideal gas law, are in ef®L063-651X99)04408-9
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[. INTRODUCTION also determined at certain positions in the bed. Both of these
studies reported that there is an exponential dependence of
Recent developments in the physics of granular métfer the density on the height near the top of the bed, similar to
have illustrated that the dissipative nature of the interactionshe Boltzmann distribution for the density of a gas in a gravi-
between grains can result in a variety of different phenom4+ational field. However, the dependence of the density devi-
ena. Of particular interest in recent years has been the dytes from the exponential behavior near the bottom. The de-
namics of vibrated granular materidlg,3], which exhibit pendence of the mean square velocity on the vibration
stationary states as well as waves and complex patterns. frequency and amplitude was found to be different in the two
order to describe these diverse states of the material, it istudies.
necessary to derive macroscopic descriptions by averaging A theoretical calculation of the distribution function in a
over the microscopic details of the motion and interactionsvibrofluidized bed was carried out by Kumarg#10]. The
between individual grains. This goal has proved elusivelimit of low dissipation, where the coefficient of restitutien
however, because a vibrated granular material is a drivers close to 1, was considered. In this limit, the mean square
dissipative system, and the interactions between the particlaglocity of the particles is large compared to the mean square
are characterized by a loss of energy due to inelastic collief the velocity of the vibrating surface, and the dissipation of
sions. The statistical mechanics framework developed foenergy during a binary collision is small compared to the
equilibrium or near-equilibrium systems cannot be used irenergy of a particle. A perturbation expansion was used,
this case. Consequently, phenomenological modléls6]  where the energy dissipation is neglected in the leading order
have been used to describe the dynamics of granular matedpproximation, and the system resembles a gas at equilib-
als. The kinetic theories developed for granular flqws] rium in a gravitational field. The velocity distribution func-
usually assume that the system is close to “equilibrium™ andtion is a Maxwell-Boltzmann distribution, and the density
the velocity distribution function is close to the Maxwell- decreases exponentially from the vibrating surface. The first-
Boltzmann distribution. order correction to the distribution due to dissipative effects
Experimental studies and computer simulations have rewas calculated using the moment expansion method, and the
ported the presence of a uniformly fluidized state in a vi-results were found to be in qualitative agreement with the
brated bed of granular material. Luding, Herrmann, and Bluexperiments of Waret al. [2].
men [9] carried out “event-driven”(ED) simulations of a The theoretical prediction§8,10] were compared with
two-dimensional system of inelastic disks in a gravitationalprevious experimental and simulation studies by McNamara
field vibrated from below, and obtained scaling laws for theand Luding[11]. They found that the theory was in good
density variations in the bed. An experimental study of aagreement with experiments for dilute beds, where the area
vibrated fluidized bed was carried out by Warr, Huntley, andfraction of the particles is low, but there were systematic
Jacques[2]. Their experimental setup consisted of steeldeviations from the theoretical predictions as the area frac-
spheres confined between two glass plates that are separatamh increases. This is to be expected, since the analysis as-
by a distance slightly larger than the diameter of the spheresumed that the density is small and the pair distribution func-
The particles were fluidized by a vibrating surface at thetion was set equal to 1. Therefore the pressure is related to
bottom of the bed, and the statistics of the velocity distribu-the density by the ideal gas law. These assumptions become
tion of the particles were obtained using visualization tech4inaccurate as the area fraction of the bed increases. An ap-
nigues. Profiles for the density and the mean square velocitgroximate method for including the correction to the pair
were obtained, and the particle velocity distributions weredistribution function was suggested by Hunt[ey2].
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In the present analysis, the correction to the low-density
theory of Kumarari8,10] is determined for a vibrofluidized go(v)= {1 —Ty——
bed where the coefficient of restitution is close to 1. An 16(1-»)? 4(1-v)?
asymptotic analysis is used, where the dissipation is ne- . . . .
glected in the leading approximation. The leading order den‘:’mdv_ IS the area 'fraptlor? corresponding tp dengityf f{he
sity and velocity profiles are determined using the momenpoeﬂf'c'er_‘t of restitution Is set equal to 1 in the leading ap-
tum balance equation in the vertical direction. In contrast tg°roximation, the equation for the pressure reduces to the
the earlier theony[8,10], the virial equation of state for a Standard virial equation of state
nonideal two-dimensional gas is used to determine the lead- _
ing order density profile. The density profile differs from the P=pTol 1+2go(v) v]. ©

Boltzmann distribution, but the velocity distribution function The resulting equation from E¢R) for the density profile is

is still a Maxwell-Boltzmann distribution. The leading order 5 first-order ordinary differential equation, which can be
temperature is determined by a balance between the sourgg|yed using the mass conservation condition
and dissipation of energy as before. The complete equilib-

rium pair distribution function is used to determine the rate oc

of dissipation of energy due to inelastic collisions. The re- fo dzp=N,

sults are compared with hard-sphere event-driven simula-

tions, and also with earlier theoretical and simulation studiesyhereN is the number of particles per unit width of the bed.
Note that the leading order temperatligis still unknown
Il. ANALYSIS at this stage. This is determined using a balance between the
The system consists of a bed of circular diggsdiameter source and d'.ss.'pa“‘“? of energy. _The source of energy due
to particle collisions with the vibrating surface is determined

o) in a gravitational field driven by a vibrating surface. The USING an average over the increase in enerav due to particle
vibrating surface has a periodic amplitude function but nocolligions with t%e vibrating surfacks, 10] Forga)lls mmetFr)ic
assumption is made regarding the form of the function. 9 o y

There is a source of energy at the vibrating surface due tgmplltude function, where the average velocity of the surface

particle collisions with the surface, and the dissipation is dueVer one perlpd IS zero@U)SfO, Fhe rate of Increase of
nergy per unit width of the vibrating surface is

to inelastic collisions. A balance between the two determine§

the “temperature,” which is the mean square velocity of the 5

particles. Sp=2 \ﬁT1/2<U2>Sgo( v)p
The limit of low dissipation, where the coefficient of res- m °

titution e is close to 1, is considered. In this limit, it can be 5 . .

shown that the mean square velocity of the particles is largéiere (U%)s represents the mean square velocity of the vi-

compared to the mean square velocity of the vibrating surbrating surface. For an asymmetric amplitude function,

face. An asymptotic expansion in the parameterUS/TO is  where the average velocity of the surface over one period is

used[8]. If the source and dissipation of energy are ne-Not zero (U)s#0), the rate of increase of energy per unit

glected in the leading approximation, the system resemblesWidth of the vibrating surface is

gas of hard disks at equilibrium in a gravitational field. The B

velocity distribution function is a Maxwell-Boltzmann distri- So=To(U)so(#)plz-0- (8)

bution at equilibrium,

V3

; 4

(6)

(7)

z=0

The rate of dissipation of energy per unit width is calculated

1 U2 by averaging over the energy loss over all the collisions be-
—ex;{ - —) , (1) tween particles and integrating over the height of the[18&d

2mTo 2To For a system where the dissipation is due to inelastic colli-

whereT, is the leading order temperature. The density pro_sions, and the normal coefficient of restitutiorejshe rate of
0 ' dissipation of energy is

file is determined by solving the momentum balance equa
tion in the vertical direction,

F(u)=

ap Do=Vm o(1-e?) Tg? f dz gy(v)p?. @)
0
9z —pg=0, (2
Note that theyy appearing ir5; andD is the Enskog factor

wherep is the pressure is the densitynumber of particles Which accounts for the increase in the frequency of collision
per arey andg is the acceleration due to gravity. For a gasfor hard disks at high densities. For a system where the dis-
at equilibrium, the pressure is related to the density by th&ipation is due to viscous drag, and the drag force is a linear

virial equation of state, which in the case of inelastic circularfunction of the particle velocitg; = — nu;, the leading order
disks is rate of dissipation per unit width is

l+e *
p=pTo T+(1+e)go(1})y , 3 DDO:ML dz pf duF(u)u-u=2uNT,. (10

where go(v) is the pair distribution function at contact, Unlike Eq. (9), the leading order dissipation due to viscous
which for circular disks is given bj/13] drag is only a function of the total number of particles per
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unit width, and is not affected by the change in the pair 0.025 T - - T -

distribution function at high densities. However, in both

cases, the density profile has to be obtained numerically in

the manner outlined above, with E4.0) substituted for Eq. 0.02

(9) in Eq. (11) below.
The temperaturd@y can now be determined from the re-

lation 0.015

Sp=Do. (11)

Analytical solutions for the density variation, E@®), were
determined for a two-dimensional bed of particleg&h In
that study, two limits were considered. In the first, which was
referred to as the “dense” limit, the density was low enough 0.005
that the ideal gas law is applicable, but high enough that the

molecular chaos assumption can be ugbke frequency of

binary collisions is large compared to that of particle colli- 0
sions with the vibrating surfageln that case, the density

decays exponentially with height,

v

0.01

Ng gz FIG. 1. Exponential decay of packing fractiom)(with a nor-

P:T—exl<_-|——), (12 malized height #/o) at low densities. The predictions of the
0 0 present analysigsolid line) and the low-density theoridotted ling

of [8] are compared with simulatiofpoints. Both the predictions

where the leading order temperature is given by S
are nearly identical. Heres=0.3, No=3, g=1, andU,=6.

L2 (U

0 _ (13)  sis are in good agreement with the simulation results even
T No(1-e?) when the density near the bottom of the bed becomes large,
while the profiles from the low-density approximation have
At higher densities, where the ideal gas law is not applicablesignificant errors. Figure 3 shows the nature of the density
the solution to the density variation is no longer exponentiapyofile in the high-density limit in the case of dissipation due
throughout, and has to be obtained numerically by an iterag viscous drag. Here too the present analysis gives reason-
tive scheme. However, at large distances from the bottomaple values for packing fraction near the bottom, while the
the bed is dilute and the decay is exponential. This provideﬁ)w_density theory predicts unphysical values.
a convenient starting point for the numerical integration from | 3 recent work, McNamara and Ludifgl] reported the

afinite height, above which we assume the asymptotic soluscaling of dissipation with the center of mass obtained from
tion (z—«) to be given by an exponential decay. A value

for the density and the temperature is assumed at this height 0.8 r . r . r

and the integration is carried out up to the vibrating plate

(z=0). The complete density profile is obtained by combin- 07 f .
ing the numerical and the asymptotic solutions. If the condi-

tions, EqQ.(6) and Eq.(11), are not satisfied after one such 0.6 .
integration, a new value is determined for the density and

temperature using the Newton-Raphson method, and the it- 0.5 7
eration is repeated until convergence. In cases where the con- |

vergence is poor, the solution is obtained ¢gntinuing a > 04 r T

low-density solution in a parameter suchMs or Uy,
0.3

I1l. SIMULATION AND RESULTS 02

The hard-sphere molecular dynami®4D), also known
as the event-driven meth@€], is used for the simulations of
the vibrofluidized bed. Periodic boundary conditions are
used in the horizontal direction and the vibrating surface at
the bottom has a sawtooth form for the amplitude function.
The simulations are carried out only for the case of inelastic
collisions, since the viscous drag requires a different simula-  fig, 2. Deviation of the density profile from the exponential
tion technique. decay at high densities in the case of dissipation due to inelastic

The density profiles obtained using the present analysisoliisions. The simulation resuipoints is captured by the present
as well as the earlier low-density approximations of Kuma-analysis(solid line), which is lower than the exponential decay
ran[8], are compared with the simulation results in Figs. 1(dotted ling of the low-density theory of8] near the bottom of the
and 2. It is seen that the density profiles of the present analysed. Heree=0.3, No=3, g=1, andU,=1.

0.1

25 30

z/o
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2(h—ho)lo

FIG. 3. Deviation of the density profile from the exponential ~ FIG. 4. Theoretical scaling of the normalized dissipati@y{)
decay at high densities in the case of dissipation due to viscouagainst the center of maéls) above the position at reshg) for the
drag. The present analysisolid line) gives physically plausible different cases reported ifil1]. All except two, (N+) with €
values for the packing fraction near the bottom, while the low-=1.73 and N—) with No=0.65, collapse onto a single curve in
density theory(dotted ling of [8] predicts values higher than the the linear region. The parameters indicated correspondd 6
maximum close packing. Here=0.2, No=20, g=20, ©=0.1, (N+),N=0.65 N—), g=25(g+),g=0.04 @—), e=0.99(e+),

andU,=5. ande=0.75 (e—), the rest of the parameters being same as the
one in the central set, which has the valls 3.2, 0=1, g=1,
ande=0.95.

simulations. The results agreed with the low-density theory
of [10] but a systematic deviation was observed at high den-
sities in all the cases. This deviation is captured in the
present analysis. The leading order dissipation at low densi-

ties in the bed is given bfg8] 3 : : : : : :
J; 2\ N2 T
Do=—5-(1-€*)N og\To. (14) 25 | 1
In [11] the total dissipation obtained from the simulation was 51 |
normalized by a factor taken out from this leading order
dissipation and a nondimensional number was defined as v"‘ N
S 15 Nd A N -
C _ DO (15) y‘ v g+
pp— " v -
(1—e)N25g\To/2 L X s & ]
* e-
The scaling of this factor with the height of the center of ®  Central
mass(h) above the position at reshg) was studied. This 05 L X %";ggmd ]
factor was found out for different parameter sets by varying | N+ Tqrzeory
the bottom wall velocityJ, over several decades such that | == N- Theory
the bed is taken from a densely packed regime to a very-low- e
density regime. They chose a central data set and varied the 107 100 107 107 107 107 107 10
parameters one at a time. It was found that in all the cases 2(h—ho)/o

considered, the scaling relation collapsed to a single curve.

The central parameter set has the valdes3.2, o=1, g FIG. 5. Scaling of the normalized dissipation with the center of
—1 ande=0.95 o ' mass: Predictions from the present analysis are compared with the

results from our simulations and the reported resultfliti. The

h he f f icl il llisi . hIinear portions of all the curves from theory, except two, fall on the
when the frequency of particle-particle collisions IS MUCNg;g jine denoted as “Theory.” The two exceptions are also

greater than th_e frequenqy of particle-wal_l collisions. It CaNghown. A set of points corresponds to the simulation data with
be shown that in the leading order the ratio of the frequency,arameter valuesi=16 (N+), N=0.65 (N—), g=25 (g+), g

of particle-particle collisions to the frequency particle-wall —g 04 g—), e=0.99 (e+), ande=0.75 —), the rest of the

collisions is 2 No. Hence the present analysis will hold parameters in a set being the same as the one in the central set,
good whenNo>1/\27. The central set corresponds &  which has the valuesi=3.2, o=1, g=1, ande=0.95.

The present analysis is valid WheenEU(z)/To<l and
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=0.35 andNo=3.2, and therefore we expect the presentwhich, here, has a value=0.75. A close inspection of the
analysis to hold good for this case. Most of the parametecurves “e-" in Fig. 4 and Fig. 5 show that the theory and
sets used if11] also fall within the limits of the theory simulation do indeed agree with each other.
derived here. We also note here that the data taken from the reported
Figure 4 shows the theoretical predictions of the total dissimulation [11] are for asymmetric sawtooth vibration,
sipation for the different cases reported in Fig. 2id]. Itis  whereas our simulation is for the symmetric sawtooth. Both
compared with the results of two simulations in Fig. 5. It isthese give similar results for the scaling ©f,. Our calcu-
seen that the present analysis correctly predicts the lowerinigtions also indicate that the theoretical predictions for the
of the coefficientC,, at high densities. This reduction in the symmetric and the asymmetric sawtooth are identical, indi-
dissipation from the constant value at low densities is the netating that the form of the bottom wall vibration does not
result of two opposing factorgi) a decrease in the density affect the scaling of the dissipation with the center of mass.
from the exponential behavior near the vibrating boticee
Fig. 2), hence reducing the total value of the dissipation, and
(ii) an increase in the frequency of collisions at high densi-
ties, increasing the dissipation. In summary, a theory to describe the state of a vibroflu-
It is also seen that not all the theoretical predictions colidized bed in the dense limit was derived. This is different
lapse onto a curve as is the case with the data from th&om the earlier theory of Kumardi8,10], which is valid for
simulation. In two of the cases the theory does not agree witfow densities where the ideal gas equation was used and the
the simulations becaug@ in one the value of the perturba- pair distribution function was set equal to 1. We have made
tion parameter is highg=1.73) and the leading order theory use of the virial equation of state to obtain a correction to the
is valid only for low e, and(ii) in the other case the value of exponential density profile obtained in low densities and the
No=0.65 is low. pair distribution function is used to calculate the increased
In Fig. 4, the apparent mismatch with “€’ is not a  frequency of collisions in the source and the dissipation of
discrepancy with the model, but has got to do with the for-energy. The theoretical predictions of density and tempera-
mula chosen used ifilL1] for the normalization of the dissi- ture were compared with the results obtained from MD simu-
pation factorC,,. They had chosen to normalize the dissi- lation of two-dimensional disks. The theory correctly pre-
pation by a factor (+e). While this might have given a dicts the lowering of the density from the exponential value
better fit for high densitielow center of mags the correct at high densities near the bottom. The theory also predicts
factor for very low densities is (4 €?) as given by Eq(14). the scaling relations of the total dissipation in the bed re-
The difference is more pronounced in the caseeefl, ported in[11].

IV. CONCLUSION
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