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Temperature scaling in a dense vibrofluidized granular material

P. Sunthar and V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

~Received 15 December 1998!

The leading order ‘‘temperature’’ of a dense two-dimensional granular material fluidized by external vibra-
tions is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of
restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared
to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be
elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the
leading approximation. The density profile is determined by solving the momentum balance equation in the
vertical direction, where the relation between the pressure and density is provided by the virial equation of
state. The temperature is determined by relating the source of energy due to the vibrating surface and the
energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with
simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-
density relation provided by the ideal gas law, are in error.@S1063-651X~99!04408-6#

PACS number~s!: 81.05.Rm, 45.05.1x, 05.70.Ln, 62.90.1k
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I. INTRODUCTION

Recent developments in the physics of granular matter@1#
have illustrated that the dissipative nature of the interacti
between grains can result in a variety of different pheno
ena. Of particular interest in recent years has been the
namics of vibrated granular materials@2,3#, which exhibit
stationary states as well as waves and complex pattern
order to describe these diverse states of the material,
necessary to derive macroscopic descriptions by avera
over the microscopic details of the motion and interactio
between individual grains. This goal has proved elusi
however, because a vibrated granular material is a dri
dissipative system, and the interactions between the part
are characterized by a loss of energy due to inelastic c
sions. The statistical mechanics framework developed
equilibrium or near-equilibrium systems cannot be used
this case. Consequently, phenomenological models@4–6#
have been used to describe the dynamics of granular ma
als. The kinetic theories developed for granular flows@7,8#
usually assume that the system is close to ‘‘equilibrium’’ a
the velocity distribution function is close to the Maxwe
Boltzmann distribution.

Experimental studies and computer simulations have
ported the presence of a uniformly fluidized state in a
brated bed of granular material. Luding, Herrmann, and B
men @9# carried out ‘‘event-driven’’~ED! simulations of a
two-dimensional system of inelastic disks in a gravitatio
field vibrated from below, and obtained scaling laws for t
density variations in the bed. An experimental study o
vibrated fluidized bed was carried out by Warr, Huntley, a
Jacques@2#. Their experimental setup consisted of ste
spheres confined between two glass plates that are sepa
by a distance slightly larger than the diameter of the sphe
The particles were fluidized by a vibrating surface at
bottom of the bed, and the statistics of the velocity distrib
tion of the particles were obtained using visualization te
niques. Profiles for the density and the mean square velo
were obtained, and the particle velocity distributions we
PRE 601063-651X/99/60~2!/1951~5!/$15.00
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also determined at certain positions in the bed. Both of th
studies reported that there is an exponential dependenc
the density on the height near the top of the bed, simila
the Boltzmann distribution for the density of a gas in a gra
tational field. However, the dependence of the density de
ates from the exponential behavior near the bottom. The
pendence of the mean square velocity on the vibrat
frequency and amplitude was found to be different in the t
studies.

A theoretical calculation of the distribution function in
vibrofluidized bed was carried out by Kumaran@8,10#. The
limit of low dissipation, where the coefficient of restitutione
is close to 1, was considered. In this limit, the mean squ
velocity of the particles is large compared to the mean squ
of the velocity of the vibrating surface, and the dissipation
energy during a binary collision is small compared to t
energy of a particle. A perturbation expansion was us
where the energy dissipation is neglected in the leading o
approximation, and the system resembles a gas at equ
rium in a gravitational field. The velocity distribution func
tion is a Maxwell-Boltzmann distribution, and the densi
decreases exponentially from the vibrating surface. The fi
order correction to the distribution due to dissipative effe
was calculated using the moment expansion method, and
results were found to be in qualitative agreement with
experiments of Warret al. @2#.

The theoretical predictions@8,10# were compared with
previous experimental and simulation studies by McNam
and Luding@11#. They found that the theory was in goo
agreement with experiments for dilute beds, where the a
fraction of the particles is low, but there were systema
deviations from the theoretical predictions as the area fr
tion increases. This is to be expected, since the analysis
sumed that the density is small and the pair distribution fu
tion was set equal to 1. Therefore the pressure is relate
the density by the ideal gas law. These assumptions bec
inaccurate as the area fraction of the bed increases. An
proximate method for including the correction to the p
distribution function was suggested by Huntley@12#.
1951 © 1999 The American Physical Society
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1952 PRE 60P. SUNTHAR AND V. KUMARAN
In the present analysis, the correction to the low-den
theory of Kumaran@8,10# is determined for a vibrofluidized
bed where the coefficient of restitution is close to 1. A
asymptotic analysis is used, where the dissipation is
glected in the leading approximation. The leading order d
sity and velocity profiles are determined using the mom
tum balance equation in the vertical direction. In contras
the earlier theory@8,10#, the virial equation of state for a
nonideal two-dimensional gas is used to determine the le
ing order density profile. The density profile differs from th
Boltzmann distribution, but the velocity distribution functio
is still a Maxwell-Boltzmann distribution. The leading ord
temperature is determined by a balance between the so
and dissipation of energy as before. The complete equ
rium pair distribution function is used to determine the ra
of dissipation of energy due to inelastic collisions. The
sults are compared with hard-sphere event-driven sim
tions, and also with earlier theoretical and simulation stud

II. ANALYSIS

The system consists of a bed of circular disks~of diameter
s) in a gravitational field driven by a vibrating surface. Th
vibrating surface has a periodic amplitude function but
assumption is made regarding the form of the functi
There is a source of energy at the vibrating surface du
particle collisions with the surface, and the dissipation is d
to inelastic collisions. A balance between the two determi
the ‘‘temperature,’’ which is the mean square velocity of t
particles.

The limit of low dissipation, where the coefficient of re
titution e is close to 1, is considered. In this limit, it can b
shown that the mean square velocity of the particles is la
compared to the mean square velocity of the vibrating s
face. An asymptotic expansion in the parametere[U0

2/T0 is
used @8#. If the source and dissipation of energy are n
glected in the leading approximation, the system resembl
gas of hard disks at equilibrium in a gravitational field. T
velocity distribution function is a Maxwell-Boltzmann distr
bution at equilibrium,

F~u!5
1

2pT0
expS 2

u2

2T0
D , ~1!

whereT0 is the leading order temperature. The density p
file is determined by solving the momentum balance eq
tion in the vertical direction,

]p

]z
2rg50, ~2!

wherep is the pressure,r is the density~number of particles
per area!, andg is the acceleration due to gravity. For a g
at equilibrium, the pressure is related to the density by
virial equation of state, which in the case of inelastic circu
disks is

p5rT0F11e

2
1~11e!g0~n!nG , ~3!

where g0(n) is the pair distribution function at contac
which for circular disks is given by@13#
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g0~n!5
1

16~12n!2 F1627n2
n3

4~12n!2G , ~4!

andn is the area fraction corresponding to densityr. If the
coefficient of restitution is set equal to 1 in the leading a
proximation, the equation for the pressure reduces to
standard virial equation of state

p5rT0@112g0~n! n#. ~5!

The resulting equation from Eq.~2! for the density profile is
a first-order ordinary differential equation, which can
solved using the mass conservation condition

E
0

`

dzr5N, ~6!

whereN is the number of particles per unit width of the be
Note that the leading order temperatureT0 is still unknown
at this stage. This is determined using a balance between
source and dissipation of energy. The source of energy
to particle collisions with the vibrating surface is determin
using an average over the increase in energy due to par
collisions with the vibrating surface@8,10#. For a symmetric
amplitude function, where the average velocity of the surfa
over one period is zero,̂U&S50, the rate of increase o
energy per unit width of the vibrating surface is

S052A2

p
T0

1/2^U2&S g0~n!rU
z50

. ~7!

Here ^U2&S represents the mean square velocity of the
brating surface. For an asymmetric amplitude functio
where the average velocity of the surface over one perio
not zero (̂ U&SÞ0), the rate of increase of energy per un
width of the vibrating surface is

S05T0^U&Sg0~n!ruz50 . ~8!

The rate of dissipation of energy per unit width is calculat
by averaging over the energy loss over all the collisions
tween particles and integrating over the height of the bed@8#.
For a system where the dissipation is due to inelastic co
sions, and the normal coefficient of restitution ise, the rate of
dissipation of energy is

D05Ap s~12e2! T0
3/2E

0

`

dz g0~n!r2. ~9!

Note that theg0 appearing inS0 andD0 is the Enskog factor
which accounts for the increase in the frequency of collis
for hard disks at high densities. For a system where the
sipation is due to viscous drag, and the drag force is a lin
function of the particle velocityai52mui , the leading order
rate of dissipation per unit width is

DD05mE
0

`

dz rE du F~u!u•u52mNT0 . ~10!

Unlike Eq. ~9!, the leading order dissipation due to visco
drag is only a function of the total number of particles p
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PRE 60 1953TEMPERATURE SCALING IN A DENSE . . .
unit width, and is not affected by the change in the p
distribution function at high densities. However, in bo
cases, the density profile has to be obtained numericall
the manner outlined above, with Eq.~10! substituted for Eq.
~9! in Eq. ~11! below.

The temperatureT0 can now be determined from the re
lation

S05D0 . ~11!

Analytical solutions for the density variation, Eq.~2!, were
determined for a two-dimensional bed of particles in@8#. In
that study, two limits were considered. In the first, which w
referred to as the ‘‘dense’’ limit, the density was low enou
that the ideal gas law is applicable, but high enough that
molecular chaos assumption can be used~the frequency of
binary collisions is large compared to that of particle co
sions with the vibrating surface!. In that case, the densit
decays exponentially with height,

r5
Ng

T0
expS 2

gz

T0
D , ~12!

where the leading order temperature is given by

T05
4A2

p

^U2&

Ns~12e2!
. ~13!

At higher densities, where the ideal gas law is not applica
the solution to the density variation is no longer exponen
throughout, and has to be obtained numerically by an ite
tive scheme. However, at large distances from the bott
the bed is dilute and the decay is exponential. This provi
a convenient starting point for the numerical integration fro
a finite height, above which we assume the asymptotic so
tion (z˜`) to be given by an exponential decay. A valu
for the density and the temperature is assumed at this he
and the integration is carried out up to the vibrating pl
(z50). The complete density profile is obtained by comb
ing the numerical and the asymptotic solutions. If the con
tions, Eq.~6! and Eq.~11!, are not satisfied after one suc
integration, a new value is determined for the density a
temperature using the Newton-Raphson method, and th
eration is repeated until convergence. In cases where the
vergence is poor, the solution is obtained bycontinuing a
low-density solution in a parameter such asNs or U0.

III. SIMULATION AND RESULTS

The hard-sphere molecular dynamics~MD!, also known
as the event-driven method@9#, is used for the simulations o
the vibrofluidized bed. Periodic boundary conditions a
used in the horizontal direction and the vibrating surface
the bottom has a sawtooth form for the amplitude functi
The simulations are carried out only for the case of inela
collisions, since the viscous drag requires a different simu
tion technique.

The density profiles obtained using the present analy
as well as the earlier low-density approximations of Kum
ran @8#, are compared with the simulation results in Figs
and 2. It is seen that the density profiles of the present an
r
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sis are in good agreement with the simulation results e
when the density near the bottom of the bed becomes la
while the profiles from the low-density approximation ha
significant errors. Figure 3 shows the nature of the den
profile in the high-density limit in the case of dissipation d
to viscous drag. Here too the present analysis gives rea
able values for packing fraction near the bottom, while t
low-density theory predicts unphysical values.

In a recent work, McNamara and Luding@11# reported the
scaling of dissipation with the center of mass obtained fr

FIG. 1. Exponential decay of packing fraction (n) with a nor-
malized height (z/s) at low densities. The predictions of th
present analysis~solid line! and the low-density theory~dotted line!
of @8# are compared with simulation~points!. Both the predictions
are nearly identical. Here,e50.3, Ns53, g51, andU056.

FIG. 2. Deviation of the density profile from the exponent
decay at high densities in the case of dissipation due to inela
collisions. The simulation result~points! is captured by the presen
analysis ~solid line!, which is lower than the exponential deca
~dotted line! of the low-density theory of@8# near the bottom of the
bed. Heree50.3, Ns53, g51, andU051.
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1954 PRE 60P. SUNTHAR AND V. KUMARAN
simulations. The results agreed with the low-density the
of @10# but a systematic deviation was observed at high d
sities in all the cases. This deviation is captured in
present analysis. The leading order dissipation at low de
ties in the bed is given by@8#

D05
Ap

2
~12e2!N2sgAT0. ~14!

In @11# the total dissipation obtained from the simulation w
normalized by a factor taken out from this leading ord
dissipation and a nondimensional number was defined a

Cpp[
D0

~12e!N2sgAT0/2
. ~15!

The scaling of this factor with the height of the center
mass~h! above the position at rest (h0) was studied. This
factor was found out for different parameter sets by vary
the bottom wall velocityU0 over several decades such th
the bed is taken from a densely packed regime to a very-l
density regime. They chose a central data set and varied
parameters one at a time. It was found that in all the ca
considered, the scaling relation collapsed to a single cu
The central parameter set has the valuesN53.2, s51, g
51, ande50.95.

The present analysis is valid whene[U0
2/T0!1 and

when the frequency of particle-particle collisions is mu
greater than the frequency of particle-wall collisions. It c
be shown that in the leading order the ratio of the freque
of particle-particle collisions to the frequency particle-w
collisions isA2p Ns. Hence the present analysis will ho
good whenNs@1/A2p. The central set corresponds toe

FIG. 3. Deviation of the density profile from the exponent
decay at high densities in the case of dissipation due to visc
drag. The present analysis~solid line! gives physically plausible
values for the packing fraction near the bottom, while the lo
density theory~dotted line! of @8# predicts values higher than th
maximum close packing. Heree50.2, Ns520, g520, m50.1,
andU055.
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FIG. 4. Theoretical scaling of the normalized dissipation (Cpp)
against the center of mass~h! above the position at rest (h0) for the
different cases reported in@11#. All except two, ~N1! with e
51.73 and (N2) with Ns50.65, collapse onto a single curve i
the linear region. The parameters indicated correspond toN516
~N1!, N50.65 (N2), g525 ~g1!, g50.04 (g2), e50.99~e1!,
and e50.75 (e2), the rest of the parameters being same as
one in the central set, which has the valuesN53.2, s51, g51,
ande50.95.

FIG. 5. Scaling of the normalized dissipation with the center
mass: Predictions from the present analysis are compared with
results from our simulations and the reported results in@11#. The
linear portions of all the curves from theory, except two, fall on t
solid line denoted as ‘‘Theory.’’ The two exceptions are al
shown. A set of points corresponds to the simulation data w
parameter valuesN516 ~N1!, N50.65 (N2), g525 ~g1!, g
50.04 (g2), e50.99 ~e1!, and e50.75 (e2), the rest of the
parameters in a set being the same as the one in the centra
which has the valuesN53.2, s51, g51, ande50.95.
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PRE 60 1955TEMPERATURE SCALING IN A DENSE . . .
50.35 andNs53.2, and therefore we expect the prese
analysis to hold good for this case. Most of the parame
sets used in@11# also fall within the limits of the theory
derived here.

Figure 4 shows the theoretical predictions of the total d
sipation for the different cases reported in Fig. 2 in@11#. It is
compared with the results of two simulations in Fig. 5. It
seen that the present analysis correctly predicts the lowe
of the coefficientCpp at high densities. This reduction in th
dissipation from the constant value at low densities is the
result of two opposing factors:~i! a decrease in the densit
from the exponential behavior near the vibrating bottom~see
Fig. 2!, hence reducing the total value of the dissipation, a
~ii ! an increase in the frequency of collisions at high den
ties, increasing the dissipation.

It is also seen that not all the theoretical predictions c
lapse onto a curve as is the case with the data from
simulation. In two of the cases the theory does not agree w
the simulations because~i! in one the value of the perturba
tion parameter is high (e51.73) and the leading order theor
is valid only for lowe, and~ii ! in the other case the value o
Ns50.65 is low.

In Fig. 4, the apparent mismatch with ‘‘e2 ’’ is not a
discrepancy with the model, but has got to do with the f
mula chosen used in@11# for the normalization of the dissi
pation factorCpp . They had chosen to normalize the dis
pation by a factor (12e). While this might have given a
better fit for high densities~low center of mass!, the correct
factor for very low densities is (12e2) as given by Eq.~14!.
The difference is more pronounced in the case ofe!1,
.
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which, here, has a valuee50.75. A close inspection of the
curves ‘‘e2 ’’ in Fig. 4 and Fig. 5 show that the theory an
simulation do indeed agree with each other.

We also note here that the data taken from the repo
simulation @11# are for asymmetric sawtooth vibration
whereas our simulation is for the symmetric sawtooth. B
these give similar results for the scaling ofCpp . Our calcu-
lations also indicate that the theoretical predictions for
symmetric and the asymmetric sawtooth are identical, in
cating that the form of the bottom wall vibration does n
affect the scaling of the dissipation with the center of ma

IV. CONCLUSION

In summary, a theory to describe the state of a vibrofl
idized bed in the dense limit was derived. This is differe
from the earlier theory of Kumaran@8,10#, which is valid for
low densities where the ideal gas equation was used and
pair distribution function was set equal to 1. We have ma
use of the virial equation of state to obtain a correction to
exponential density profile obtained in low densities and
pair distribution function is used to calculate the increas
frequency of collisions in the source and the dissipation
energy. The theoretical predictions of density and tempe
ture were compared with the results obtained from MD sim
lation of two-dimensional disks. The theory correctly pr
dicts the lowering of the density from the exponential val
at high densities near the bottom. The theory also pred
the scaling relations of the total dissipation in the bed
ported in@11#.
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